a^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)
=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+ab+b^2)
有立方和公式及其推广:
(1) a^3+b^3=(a+b)(a^2-ab+b^2)
立方和公式
a^3+b^3=(a+b) (a^2-ab+b^2)
折叠立方差公式
a^3-b^3=(a-b) (a^2+ab+b^2)
折叠3项立方和公式
a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
推导过程:
a^3+b^3+c^3-3abc
=(a^3+3a^2 b+3ab^2+b^3+c^3)-(3abc+3a^2 b+3ab^2)
=[(a+b)^3+c^3]-3ab(a+b+c)
=(a+b+c)(a^2+b^2+2ab-ac-bc+c^2)-3ab(a+b+c)
=(a+b+c)(a^2+b^2+c^2+2ab-3ab-ac-bc)
=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)
折叠编辑本段文字表达
折叠立方和,差公式
两数和(差),乘它们的平方和与它们的积的差(和),等于这两个数的立方和(差)
折叠3项立方和公式
三数之和,乘它们的平方和与它们两两的积的差,等于这三个数的立方和减三数之积的三倍
折叠编辑本段公式证明
⒈迭代法:
我们知道:
0次方和的求和公式ΣN^0=N 即1^0+2^0+...+n^0=n
1次方和的求和公式ΣN^1=N(N+1)/2 即1^1+2^1+...+n^1=n(n+1)/2
2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6 即1^2+2^2+…+n^2=n(n+1)(2n+1)/6——平方和公式,此公式可由同种方法得出,取公式(x+1)^3-x^3=3x^2+3x+1,迭代即得。
取公式:(X+1)^4-X^4=4×X^3+6×X^2+4×X+1
系数可由杨辉三角形来确定
那么就得出:
(N+1)^4-N^4=4N^3+6N^2+4N+1…………⑴
N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1…………⑵
(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1…………⑶
…………
2^4-1^4=4×1^3+6×1^2+4×1+1…………(n)
.
于是⑴+⑵+⑶+……+(n)有
左边=(N+1)^4-1
右边=4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N
所以呢
把以上这已经证得的三个公式代入
4(1^3+2^3+3^3+……+N^3)+6(1^2+2^2+3^2+……+N^2)+4(1+2+3+……+N)+N=(N+1)^4-1
得4(1^3+2^3+3^3+……+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N
移项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+4N^3+6N^2+4N-N-2N^2-2N-2N^3-3N^2-N)
等号右侧合并同类项后得 1^3+2^3+3^3+……+N^3=1/4 (N^4+2N^3+N^2)
即
1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2
大功告成!
立方和公式推导完毕
1^3+2^3+3^3+……+N^3= 1/4 [N(N+1)]^2
2. 因式分解思想证明如下:a^3+b^3=a^3+a^2×b+b^3-a^2×b
=a^2(a+b)-b(a^2-b^2)=a^2(a+b)-b(a+b)(a-b)
=(a+b)[a^2-b(a-b)]=(a+b)(a^2-ab+b^2)
折叠编辑本段公式延伸
正整数范围中 1^3 + 2^3 + …… n^3 = [n (n+1) / 2]^2=(1+2+……+n)^2
折叠编辑本段几何验证
立方和公式透过绘立体的图像,也可验证立方和。根据右图,设两个立方,总和为:
x^3+y^3
把两个立方体对角贴在一起,根据虚线,可间接得到:
(x+y)^3
要得到x^3+?y^3,可使用(x?+?y)^3的空白位置。该空白位置可分割为3个部分:
·x×y×(x+y)
·x×(x+y)×y
·(x+y)×x×y
把三个部分加在一起,便得:
=xy(x+y)+xy(x+y)+xy(x+y)
=3xy(x+y)
之后,把(x?+?y)^3减去它,便得:=(x+y)^3-3xy(x+y)公式发现两个数项皆有一个公因子,把它抽出,并得:
=(x+y)[(x+y)^2-3xy]
(x?+?y)^2可透过和平方公式,得到:
=(x?+?y)(x?^2+ 2xy?+?y^2-3xy)
=(x?+?y)(x?^2xy?+?y^2)
这样便可证明:x^3+y^3=(x?+?y)(x^2 xy?+?y^2)
折叠编辑本段关于因数
一般而言,任取一自然数N,他的因数有1,n1,n2,n3,……,nk,N,这些因数的因数个数分别为1,m1,m2,m3,……,mk,k+2,则
1^3+m1^3+m2^3+m3^3+……+mk^3+(k+2)^3
=(1+m1+m2+m3+……+mk+k+2)^2
我们发现,上述规律对素数p是永远成立的,因为素数p的因数只有1和p,因数的个数只有1和2,所以成立。
合数的验证方法可以从因数个数出发证明,有中学水平的人可以自己证明。
比如120,有因数
1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120;它们的因数个数为
1,2,2,3,2,4,4,4,6,4,6,8,8,8,12,16,
1^3+2^3+2^3+3^3+2^3+4^3+4^3+4^3+6^3+4^3+6^3+8^3+8^3+8^3+12^3+16^3=8100
(1+2+2+3+2+4+4+4+6+4+6+8+8+8+12+16)^2=8100
立方差,立方和公式是什么?
立方公式(a-b)3是完全立方差公式。完全立方差公式是一个数学公式,即(a-b)?=a?-3a?b+3ab?-b? 立方和公式。(a-b)?=a?-3a?b+3ab?-b?;注意:在(a-b)?=a?-3a?b+3ab?-b?中,按第一个字母排列后它的号是“+、-.+、-”,它是一个齐次式(每一项都是3次),它的系数是1、-3、+3、-1,结果是四项式。
立方公式分解过程:
两数差乘以它们的平方和与它们的积的和等于两数的立方差。
(a-b)?=a?-3a?b+3ab?-b?
所以a?-b?=(a-b)?-[-3(a?)b+3ab?]=(a-b)(a-b)?+3ab(a-b)
=(a-b)(a?-2ab+b?+3ab)=(a-b)(a?+ab+b?:
(1)a?+b?=(a+b)(a?-ab+b?)。
(2)a^n+b^n=(a+b)[a^(n-1)-a^(n-2)×b+...+(-1)^(r-1)×a^(n-r)×b^(r-1)+...+b^(n-1)](n为奇数)(后面括号中各项式的幂之和都为n-1),a^n表示a的n次方。
立方差公式:a3-b3=(a-b)(a2+ab+b2)。
立方和公式:(a+b)(a?-ab+b?)=a?+b?。
立方和公式是有时在数学运算中需要运用的一个公式。该公式的文字表达为:两数和,乘它们的平方和与它们的积的差,等于这两个数的立方和。
立方差公式也是数学中常用公式之一,两数的平方和加上两数的积再乘以两数的差,所得到的积就等于两数的立方差。
立方差公式证明:
所以根据交换律法则:
a3-b3=(a-b)3-(-3a2b+3ab2)
=(a-b)(a-b)2+(3ab*a)-(3ab*b)
=(a-b)(a-b)2+(a-b)(3ab)
=(a-b) [(a-b)2+3ab]
=(a-b) [(a2-2ab+b2)+3ab]
=(a-b)(a2+ab+b2)
证得:a3-b3=(a-b)(a2+ab+b2)
评论列表(3条)
我是中宝号的签约作者“谷冬”
本文概览:a^3-b^3=(a-b)^3-[-3(a^2)b+3ab^2]=(a-b)(a-b)^2+3ab(a-b)=(a-b)(a^2-2ab+b^2+3ab)=(a-b)(a^2+...
文章不错《“立方和、立方差”公式是什么?》内容很有帮助